

Head Office The Mall Maryborough Woods Douglas Cork, T12 K8YT (021) 477 4940 www.wdg.ie reception@wdg.ie Dublin Office Level 1, The Chase Carmanhall Road Sandyford Dublin, D18 Y3X2 (01) 524 0191 www.wdg.ie reception@wdg.ie

Project: Proposed Development at Ceann Scribe, Clontead More, Coachford, Co. Cork.

Project No: 23028

Document Title: Civil Engineering Report

Document No: 23028-XX-XX-XX-XX-RP-WDG-CE-001

Author: Ian Reilly MEng MIEI

Date	Revision	Status	Originator	Checked
07.02.2024	0	0 DRAFT		
15.02.2024	0	P3 Planning	IR	NF
04.03.2024	1	P3 Planning	IR	MW

Walsh Design Group is a registered trading name of Browne Asset Solutions Ltd. Reg. No: 476845 Registered Office: The Mall, Maryborough Woods, Douglas, Cork. T12 K8YT Directors: Michael Walsh, Jamie Wallace, Patrick Beckett

1.0 Introduction1
1.1. Site Description
1.2. Proposed Development
2.0 Road Design
2.1. Design Guidelines4
2.2. Road Hierarchy4
2.3. Entrance Sightlines5
2.4. Shared surfaces and Surface Materials5
2.5. Traffic Calming
2.6. Street Gradients7
2.7. Pedestrian Crossings7
2.8. Pavement Construction8
2.9. Private Driveways & Paving9
2.10. Site Cut and Fill9
3.0 Surface Water Drainage10
3.1. Surface Water Design and Simulation Criteria10
3.1.1. Allowable Discharge11
3.1.2. Network Design11
3.1.3. Road Gullies12
3.2. Drainage Impact Assessment13
3.2.1. Detention Basin13
3.2.2. Underdrained Roadside Swales14
3.2.3. Permeable Paving15
3.2.4. Roadside Bioretention Tree Pits16
3.2.5. Bio-retention Rain Garden Planters17
3.2.6. Water Butts18
4.0 Wastewater Drainage
4.1. Wastewater Design Criteria19
5.0 Water Supply20
5.1. Water Demand20
6.0 Utilities
6.1. Electricity21
6.2. Gas21
Appendix A A
Appendix BB
Appendix CC
Appendix D D

Walsh Design Group is a registered trading name of Browne Asset Solutions Ltd. Reg. No: 476845 Registered Office: The Mall, Maryborough Woods, Douglas, Cork. T12 K8YT Directors: Michael Walsh, Jamie Wallace, Patrick Beckett

1.0 Introduction

Walsh design group (WDG) were appointed by Cork County Council to produce a Civil Engineering Report as part of a planning application for the proposed residential development of 26 dwellings at Ceann Scribe, Clontead More, Coachford, Co. Cork.

This report is particularly concerned with the following Engineering services:

- Road design,
- Wastewater Drainage,
- Surface Water Drainage & Drainage Impact Assessment,
- Water Supply.

This report should be read in conjunction with the following accompanying drawings and documents submitted with the planning application:

- 23028-XX-XX-XX-DR-WDG-CE-001
- 23028-XX-XX-XX-DR-WDG-CE-002
- 23028-XX-XX-XX-DR-WDG-CE-003
- 23028-XX-XX-XX-DR-WDG-CE-004
- 23028-XX-XX-XX-DR-WDG-CE-500
- 23028-XX-XX-XX-DR-WDG-CE-501 Wastewater,
- 23028-XX-XX-XX-XX-DR-WDG-CE-502 Supply (Sheet 1 of 2),
- 23028-XX-XX-XX-DR-WDG-CE-503 Supply (Sheet 2 of 2),
- 23028-XX-XX-XX-DR-WDG-CE-504
- 23028-XX-XX-XX-RP-WDG-CE-002
- 23028-XX-XX-XX-RP-WDG-CE-003

- Site Layout Roads & Levels,
- Site Layout Drainage,
- Site Layout Water Supply,
- Site Layout Proposed SuDS Features,
- Surface Water Drainage Typical Details,
- Irish Water Standard Details -

Irish Water Standard Details – Water

Irish Water Standard Details - Water

- Construction Details,
- Planning Stage CEMP,
- Flood Risk Assessment.

1.1. Site Description

This site proposed for development is a greenfield site and is located just north of the centre of Coachford village, County Cork, see Figure 1 for the site location. The site area within the application redline boundary is 1.01ha. The ITM grid coordinates at the approximate centre of the site are E545810, N573516.

Figure 1: Google Earth Satellite Photo of Coachford

Figure 2: Google Earth Satellite Photo of the proposed development site.

The land is mostly grass covered at this time as is evident from the satellite photo of the site shown in Figure 2. The ground on the site rises from its lowest point of 70.2m OD near the junction of the R619 and the L-96192-11 in the southernmost corner to a high point of 77.2m OD near the northeast corner.

The eastern boundary of the site is formed by the R619 regional road, the southwestern boundary is formed by the L-96192-11 local road. The north and northwest boundaries are shared with a private driveway and a tree covered private plot respectively.

1.2. Proposed Development

The proposed development would consist of 26 dwelling units including 10 No. 1 Bed Apartments, 10 No. 2 Bed 2 Storey Townhouses and 6 No. 3 Bed 2 Storey Semi Detached Houses. A new vehicular access to the site is proposed off the R619 regional road. The proposed development will also include new roads, drainage, water supply, landscaping, boundary treatments, public lighting, electrical and telecommunications infrastructure and all other site development works entailed in a residential development.

Architectural, Engineering and Landscaping drawings are included in the planning documentation; an outline of the development is shown in the Architect's site layout in Figure 3.

Figure 3: Architect's Site Layout

2.0 Road Design

The layout of the proposed new roads and how they connect with the R619 regional road is shown on WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-001.

2.1. Design Guidelines

The proposed roads within the estate have been designed in substantial compliance with the following:

- Design Manual for Urban Roads and Streets (DMURS) Dept. of Environment and Dept. of Transport Tourism and Sport-2019,
- Recommendations for Site Development Works for housing areas DOE 1998,

2.2. Road Hierarchy

There are no *Link* roads or 'through roads' proposed in the development. The proposed roads would be considered local roads in the DMURS hierarchy shown in Table 1. Local roads are described as roads that provide access within communities and to *Arterial* and *Link* roads. The local roads in the development will connect with the R619 which is considered a link road that will connect the development with Coachford Village and and eventually with the arterial N22 national road to the south at Farnanes. The R618 runs in an east/west direction through Coachford and connects it to Carrigadrohid in the west and Dripsey to the east.

DMURS Description	Roads Act/NRA DMRB	Traffic Management Guidelines	National Cycle Manual		
Arterial	National	nal Primary Distributor Roads			
Link	Regional (see note 1)	District Distributor Local Collector (see Notes 1 and 2)	Local Collector		
Local	Local	Access	Access		
Notes					
Note 1: Larger Region are the main links betw	al/District Distributors may veen major centres (i.e. to	fall into the category o wns) or have an orbital	f Arterial where they function.		
Note 2: Local Distribut short in length and sim	ors may fall into the categ ply link a neighbourhood	gory of Local street whe to the broader street ne	re they are relatively twork.		

Table 1: DMURS Table 3.1 - Terminology used in DMURS compared with other publications.

It is proposed to use a road width of 6.0m throughout the development as most parking spaces/driveways are perpendicular to the carriageway. All roads shall be served by at least one footpath with a minimum width of 2.0m and all estate roads shall have a sign posted speed limit of 30km/h.

2.3. Entrance Sightlines

WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-001 includes sightlines drawn at the proposed development's entrance from the R619. The sightlines illustrate that a driver leaving the development has a clear view to the near side road edge to the north and south of at least 49m once the ditch has been removed.

The R619 has a sign posted speed limit of 50km/h in this area. The safe stopping distance (SSD) on a bus route with a 50km/h speed limit is 49m according to Table 4.2 of DMURS (2019), see Figure 4.

Design Speed (km/h)	SSD Standard (metres)	Design Speed (km/h)	SSD Standard (metres)
10	7	10	8
20	14	20	15
30	23	30	24
40	33	40	36
50	45	50	49
60	59	60	65

Figure 4: DMURS (2019); Table 4.2, Reduced SSD standards for application within cities towns and villages

Section 4.4.2 of DMURS (2019) states that a maximum setback or 'X' distance of 2.4m should be used for priority junctions in urban areas as longer setback distances allow higher vehicle speeds through junctions and may encourage more than one vehicle on the minor arm to go for the same gap in traffic on the major arm when it is not ideal that they do so. The shorter setback distances protect pedestrians and other vulnerable road users.

The visibility splay shall be kept clear of any vegetation or obstacle that could block a driver's view of oncoming vehicles or cyclists. Any boundary walls constructed within visibility splays shall be restricted to less than 800mm in height. Similarly, any planting within a visibility splay shall be of a species that will not grow to more than 800mm in height.

Nothing shall be planted or sown within a visibility splay without prior written permission from the Local Authority.

2.4. Shared surfaces and Surface Materials

DMURS encourages the use of raised and shared surfaces which promote integration between pedestrians, cyclists, and drivers. This has been shown to be effective where pedestrian activities are high and vehicle movements are mainly due to lower-level access requirements and circulatory purposes.

DMURS recommends that, where design speeds of 30km/h are desired, periodic changes in the colour and/or texture of the street surfaces should be employed. In this development,

shared surfaces are introduced through raised tables and the use of material changes in the street surface treatments.

Shared surfaces in the form of raised homezone areas will be finished in bituminous surfacing with beige coloured chippings to differentiate these features from the normal street surfaces finished in standard black bituminous surfacing, see WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-504 for construction details.

The proposed locations and extent of these features are shown on WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-001.

2.5. Traffic Calming

It is proposed to limit the vehicle speeds within the development to 30km/h using standard signage and traffic calming measures as recommended by DMURS and the Traffic Management Guidelines (DoELG 2003) to help improve driver behaviour and reduce vehicle speeds.

The more visible traffic calming measures proposed are raised homezones and a raised junction with the proposed locations shown in WDG drawing No. 23028-XX-XX-XX-DR-WDG-CE-001. These are positioned to reduce the lengths of straight and level roads that would allow a build-up of vehicle speed while also providing designated non-signalised, crossing points for pedestrians.

Ramps to raised sections of roadway shall be constructed in accordance with Diagram 6.34 of The Traffic Management Guidelines. The street level is raised 75mm and finished using bituminous surfacing with beige coloured chippings with 1:15 ramps at each side painted with white triangles (M112) to warn drivers of the elevation change (see Figure 5).

Figure 5: Traffic Management Guidelines, Diagram 6.34 - Raised Tables

2.6. Street Gradients

In accordance with DMURS guidelines, roads have been limited as far as possible, to gradients of 5% or less. As the access road to the development meets the R619 it will have a maximum gradient of 2% for 7.0m in accordance with section 2.7 of the *Recommendations for Site Development Works for housing areas – DOE 1998.*

All proposed roads shall have a cross fall of 2.5%. Vertical alignment has been carefully considered to minimise the amount of cut and fill on site.

2.7. Pedestrian Crossings

Pedestrian crossings will be placed at 2 points of the development where there are natural crossing points with footpaths on both sides, see WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-001. The proposed pedestrian crossings are uncontrolled crossing points. Each crossing point shall be constructed using dished kerbs in accordance with Diagram 13.1 of the Traffic Management Guidelines 2013, see Figure 6.

Figure 6: Diagram 13.1 Dished Crossing - Traffic Management Guidelines; DOT, 2013

Buff coloured tactile paving in accordance with Table 13.1 of the Traffic Management Guidelines shall be set in the footpath at each crossing point. Paving slabs measure 400mm x 400mm and shall be laid in a pattern of 3 wide by 2 deep (1200mm wide x 800mm deep) at each crossing point, as illustrated on drawing no. 23028-XX-XX-XX-XX-DR-WDG-CE-001.

2.8. Pavement Construction

Street pavement and footpath construction shall be carried out in accordance with the recognised standard; 'Recommendations for Site Development Works for Housing Areas; DoELG 1998'. Roads will be finished in bituminous surfacing and footpaths will be constructed in concrete. See WDG construction details drawing no. 23028-XX-XX-XX-DR-WDG-CE-504 for road, footpath, and kerb details.

Road construction assumes a minimum design CBR for the existing ground. The appointed main contractor will be obliged to carry out testing to establish the actual CBR prior to final road design and commencement of road construction.

2.9. Private Driveways & Paving

Each private dwelling plot with car parking included shall have driveway slopes in compliance with Technical Guidance Document M of the Building Regulations. Footpaths across all driveway entrances will be dished and incorporate dropped kerbs. All parking bays shall be constructed with permeable paving. The permeable paving will allow for some of the surface water to soak into the subsoil and ground water rather than leaving the site via the sewer network which is preferable in terms of SuDS.

2.10. Site Cut and Fill

Prior to any construction works on site the topsoil (approx. 200mm deep) will be stripped from the surface in all areas apart from the large green areas. This topsoil will be stockpiled, according to best practice, on site to be reused in private gardens and landscaped areas.

Stockpiles are to be located, formed and maintained according to best practice. Vegetation and any waste materials are to be removed from storage areas prior to stockpiling. Soils shall be stockpiled in the driest condition possible. Soil will be banked with a maximum side slope of 1 in 2 and grass seeded with a grass/clover mix to minimise soil erosion and help reduce infestation by nuisance weeds. Stockpiles are to be fenced off and have their contents identified using clear signage. No vehicles shall be allowed to pass over stockpiles.

Fill imported onto the site to be placed under buildings shall comply with Technical Guidance Document D of the Building Regulations and NSAI Standard Recommendation 21 (S.R.21). Fill imported for use under roadways shall comply with the Tii Specification for Roadworks Series 600 documents.

3.0 Surface Water Drainage

The proposed storm sewer collection system consists of a 100mm diameter pipe collection network around each house in accordance with TGD part H discharging to 225mm diameter uPVC sewer or larger in the public areas of the development. The surface water network layout is shown in drawing no. 23028-XX-XX-XX-DR-WDG-CE-002 and the typical details for the surface water infrastructure are shown on drawing no. 23028-XX-XX-XX-XX-DR-WDG-CE-500.

The surface water sewers have been designed using the Causeway Flow design software and the Wallingford procedure for the design and analysis of urban drainage. The surface water system for the development is a single network falling generally from north to south, exiting the site in its southern corner and continuing under the R619 to its junction with the R618 in Coachford Village. It is intended to discharge the stormwater to an existing culvert on the southern side of the R618 at the junction.

3.1. Surface Water Design and Simulation Criteria

The storm network's design criteria included:

- maximum rainfall of 50 mm/hr,
- maximum time of concentration of 30 minutes,
- minimum cover of 1.2m to pipes under roads,
- M5-60 of 15.9mm (Met Eireann),
- SPR of 0.47.

IGSL Ltd. were contracted by Cork County Council to carry out a site investigation on the site. The soil was noted as being gravelly CLAY in the trial pit logs and the soil infiltration rates recorded after BRE Digest 365 testing were relatively poor. To classify this soil, Table 5/1 of the NRA, DMRB, Volume 4, Section 2, Part 1 – NRA HD 106/15, was used. The soil would be considered Class S4 with a corresponding SPR of 0.47.

The storm networks were tested by simulating both summer and winter storms with durations of between 15 minutes and 24 hours and return periods of 1, 30 and 100 years with the following criteria:

- Summer volumetric runoff coefficient of 0.75,
- Winter volumetric runoff coefficient of 0.84,
- Areal runoff factor of 1.0,
- Additional flow for climate change of 20%.

The surface water sewer networks have been modelled and each individual pipe run has been designed such that no flooding will occur to individual elements during any storm up to and including 24-hour 100-year return period, summer, and winter storms. In all storm simulations an additional flow of 20% was added to account for future climate change.

(See detailed design in Appendix A to this document).

3.1.1. Allowable Discharge

In accordance with the recommendations of sustainable urban drainage systems (SuDS) the allowable stormwater discharge from the surface water network was calculated by means of the QBAR equation for small rural catchments (< 25 km²) as indicated in the institute of Hydrology, UK Report No. 124. QBAR is calculated using the following formula: QBAR = (0.00108 [AREA]^{0.89} [SAAR]^{1.17} [SOIL]^{2.17})

Where,

QBAR (m ³ /sec)	=	Annual peak flow
AREA (km ²)	=	Catchment area
SAAR (mm)	=	Standard annual average rainfall
SOIL	=	Index with values between 0.15 and 0.50

The variables for the sewer network are as follows:

AREA The catchment area of the estate that will have its runoff attenuated is $1.045ha = 0.01045km^2$,

SAAR The standard average rainfall for the site for the period from 1941 to 1970 was obtained from the UKSUDS website and is approximately 1263 mm/year,

SOIL This index was obtained using the Table 5/1 of the DMRB, see Section 3.1 above. Soil Type S4 with a Standard Percentage Runoff (SPR) of 0.47.

For developments smaller than 50ha, the allowable discharge is linearly interpolated from the QBAR value obtained for a 50ha site. Inputting the above data into the QBAR equation, QBAR Actual is calculated as follows:

QBAR	=	$(0.00108 \ [0.5]^{0.89} \ [1263]^{1.17} \ [0.47]^{2.17})$
	=	0.482 m3/sec
	=	482 l/sec

By linear interpolation => Adjusted QBAR = 10.06 l/sec.

3.1.2. Network Design

This single network is designed to fall generally from north to south and exit the development in the southernmost corner at the junction between the R619 and the L-96192-11. To reduce the forward flow from the developed site to a maximum of the QBAR greenfield runoff rate of 10.06 l/s a hydrobrake shall be constructed in a manhole prior to the sewer exiting the site. Choking the flow to this rate will result in the requirement for temporary attenuation storage. A certain amount of attenuation storage shall be provided in the roadside swales, but the primary storage element shall be a shallow detention basin in the lower, southwest area of the site. These features are described in more detail in the drainage impact assessment below. It is intended to continue the new surface water network southwards under the R619 to Coachford Village where it is proposed to discharge the stormwater to an existing culvert on the southern side of the R618 at the junction.

Coachford Infiltration Rates								
		(m/min)						
	Stage 1	Stage 2	Average					
SK01	0.00041	0.00021	0.00031	0.0186				
SK02	0.00061	0.00051	0.00056	0.0336				
SK03	0.0005	0.0003	0.0004	0.024				
SK04	0.00045	0.00033	0.00039	0.0234				
SK05	0.00041	0.00041	0.00041	0.0246				
SK06	0.0005	0.00042	0.00046	0.0276				

Table 2: Summary of IGSL Ltd. Soil Infiltration Rates

The soil infiltration rates shown in Table 2 were recorded by IGSL Ltd. after carrying out 6 no. BRE Digest 365 tests across the site. The IGSL report is included with this application. The infiltration rates are relatively poor at around 20-25mm per hour but a certain amount of infiltration will occur in all SuDS measures constructed to intercept, filter and attenuate the surface water runoff.

To incorporate underdrained roadside swales into the design, the new estate's roads are designed to have a single crossfall towards the verge containing the swale.

In accordance with the Wallingford Procedure, using only impermeable areas in the modified rational method, a Cv (Volumetric Runoff Coefficient) of 0.75 was used for summer events and 0.84 for winter. For the purpose of calculating the volume and rate of flow in the network, the maximum hardstanding area contributing to each pipe run was measured. The hardstanding consists of all roofs, driveways, parking spaces, roads, footpaths and other paved sections within the contributing area. Permeable paving is proposed in areas of the development, however, as the infiltration rates are relatively poor it is assumed that the permeable paving will serve in an interception and attenuation capacity only. As a result, the runoff will be slowed down and filtered but full runoff to the sewer is assumed from permeable paving.

The proposed surface water network has been tested with the Causeway Flow software, simulating rainfall events up to and including the 24-hour, 100 year storm with a 20% addition allowed for climate change. Modelling shows that no flooding occurs in any rainfall event tested.

3.1.3. Road Gullies

Gullies are only used in the homezone areas of the site as shown on WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-002. It is not practical to use roadside swales in this area so the sewers are located under the estate road and the runoff from the surrounding hardstanding areas is collected by a number of gullies. All gullies will be precast concrete complying with the requirements of BS 5911: Part 230. The outlet from the gullies will be 150mm diameter pipe set a minimum of 375mm off the floor of the chamber. This allows for debris and silt that falls through the grating to settle below the invert of the outlet pipe. The silt in gullies must be regularly cleaned out as part of the silt management and maintenance schedule in the operational phase of the housing development.

The class of gully grating required will be D400 as per the manhole covers. Gully gratings in roads will be set with the direction of the openings at right angles to the direction of traffic.

3.2. Drainage Impact Assessment

SuDS measures are proposed for the development in both public and private areas in accordance with the guidance from the County Development Plan 2022 Advice Note 1 on Surface Water management and the CIRIA SuDS Manual C753.

The Measures proposed will decrease the impact of the development on the receiving environment and also provide amenity and biodiversity in many cases. Regular maintenance of the SuDS measures will be required to ensure that they are effective throughout their design life. The following paragraphs describe the following SuDS features proposed: a detention basin, permeable paving, underdrained roadside swales, bio-retention tree pits, bio-retention raingardens and water butts.

3.2.1. Detention Basin

The primary means of attenuating runoff prior to its infiltration into the soil shall be the proposed detention basin. The basin is designed to have a depth of 0.3m, side slopes with a gradient of 4 horizontal to one vertical, a base area of approximately $300m^2$ and a surface area, when full, of $378m^2$. This will provide temporary attenuation storage of approximately $100m^3$. The infiltration rate of 0.0276m/hr was recorded by IGSL at the adjacent test location SK06 during soakaway testing in accordance with BRE Digest 365. An infiltration rate of 0.02m/hr was considered in calculating the size of the basin such that no flooding would occur in the drainage network in any event up to and including the 24-hour 100-year storm.

It is worth noting that the basin is designed to be dry most of the time and will only hold water temporarily, during heavy rainfall events. With its shallow depth and relatively gentle side slopes it is basically a shallow depression in the green area that fills with water quite rarely and for a short period. At all other times it will be dry and can function as green open space containing planting and/or furniture that is compatible with getting wet occasionally. See examples in Figure 7.

Figure 7: Examples of detention basins by Peterborough City Council in the UK (CIRIA SuDS Manual C753)

Grassed slopes of 1:3 or less can be mowed with ride-on lawn mowers for ease of maintenance. The 1:4 side slopes are also important in terms of safety as the change of water depth is gradual rather than sudden should someone enter the basin. See WDG drawings no. 23028-XX-XX-XX-DR-WDG-CE-002 and 504 for the proposed layout and details.

3.2.2. Underdrained Roadside Swales

Traditionally storm sewers were constructed under roadways for the most part. It is proposed here to move the storm sewer into road verges as far as possible. It is proposed to construct linear swales parallel with the roads and to have dropped kerbs at the adjacent road edges to allow runoff to fall evenly into the swale. Where swales are in place the road will be constructed with a single 1:40 crossfall to allow the full surface width to drain towards that side of the road. Under the swale the sewer pipe will be perforated and the trench that the pipe is laid in will be filled with suitable filter material. Runoff from the road surface will be gathered in the shallow swale, drain down through the fill material and enter the sewer pipe having been slowed down and filtered in the process, see Figure 8.

Figure 8: Underdrained Roadside Swale (CIRIA C753 SuDS Manual)

Swales shall be constructed in accordance with the guidance in the CIRIA SuDS Manual Chapter 16 and the detail on the accompanying drawing no. 23028-XX-XX-XX-DR-WDG-CE-504. The dimensions of the swale can be variable to suit the available space but the depth will be a maximum of 500mm and the side slopes will be at a maximum gradient of 1:3. The swales shall be set with grass and/or wildflowers which can be mown normally due to the shallow side slopes, see example in Figure 9. The longitudinal gradient of the swale should be maintained at 1:100 or less in order to slow flows and allow full interception.

Figure 9: Example of roadside swale from the CIRIA SuDS Manual (C753)

CIRIA C753 (The SuDS Manual) Table 24.6 notes that filter swales can be considered to provide Interception when draining the runoff from impermeable surfaces, i.e. it can be assumed that there will be zero runoff from the first 5 mm rainfall for 80% of events during the summer and 50% in winter. The stone filled trenches also provide temporary attenuation storage as there is up to 30% voids in the filter material.

3.2.3. Permeable Paving

Permeable paving is proposed for all car parking spaces in the development. The permeable paving will allow surface water to soak into the subsoil and ground water rather than leaving the site via the sewer network which is preferable in terms of SuDS. See the accompanying WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-504 for the construction details of the permeable paving, see example in Figure 10.

CIRIA C753 (The SuDS Manual) notes that studies have shown that runoff typically does not occur from permeable pavements for rainfall events of up to 5 minutes in length. The paving's substrate intercepts and stores the runoff before some of it percolates into the surrounding soil and any overflow is piped to the sewer network. The substrate shall be a minimum of 300mm deep and formed with washed, coarse, graded aggregate with 30% voids for water storage.

Figure 10: Example of permeable paving.

3.2.4. Roadside Bioretention Tree Pits

Bioretention tree pits, constructed in accordance with CIRIA SuDS Manual Chapter 19 and the detail provided in drawing no. 23028-XX-XX-DR-WDG-CE-504, are proposed in roadside green areas of the site where a proportion of the surface water from the hard road and footpath surfaces can be channelled towards the tree base for temporary storage and percolation to ground water. The tree pits can be placed in isolated green planters where gaps in the kerbing or kerb drains allow surface water to fall to the base of the trees as per the examples in Figure 11 or tree pits can be arranged to fill an available green space. In all cases, an overflow pipe will carry any overflow back to the sewer in heavier rainfall events. This prevents the tree's roots from being inundated for long periods, causing damage or disease.

Figure 11: Examples of tree pits in isolated green planters from the CIRIA SuDS Manual

Whilst the grass along the top of the roadside verges will most likely be mowed the local area around the base of each tree pit is to be set with a variety of planting including native wildflower grass seed mixes to promote urban biodiversity - providing habitat and food for native insects, invertebrates, and birds. This planting scheme will not be mowed regularly but

occasionally cleaned and weeded. The bioretention tree pits offer runoff interception, filtration and water storage as well as offering further benefits such as evapotranspiration, cooling of runoff in the shade and the promotion of biodiversity.

CIRIA C753 (The SuDS Manual) Table 24.6 notes that, regarding interception design of tree root system (bio retention areas), pavements drained by tree root systems can be considered to provide Interception, i.e. it can be assumed that there will be zero runoff from the first 5 mm rainfall for 80% of events during the summer and 50% in winter.

See the accompanying WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-002 for the proposed locations of the tree pits.

3.2.5. Bio-retention Rain Garden Planters

It is proposed that dwelling roofs can discharge to rain garden planters in back yards where they will provide treatment to roof runoff through evapotranspiration within the filter media of the rain garden structure. The planters will consist of small, raised gardens enclosed in robust treated timber boxes with high permeability soil and a perforated surface water drain is to be provided at a low level to drain any excess surface water to the drainage network, see diagram in Figure 12.

Figure 12: Section through a simple rain garden with outlet pipe (CIRIA C753)

CIRIA C753 (The SuDS Manual) Table 24.6 notes that regarding interception design of rain gardens (bio retention areas), pavements drained by rain gardens can be considered to provide Interception, i.e. it can be assumed that there will be zero runoff from the first 5 mm rainfall for 80% of events during the summer and 50% in winter.

3.2.6. Water Butts

It is proposed to install a 300-litre water butt to the rear of each dwelling that has a rear garden. The water butt shall be designed to collect water from the downpipes with a bypass system so that they do not overtop and flood the yard/garden. The overflows shall be connected back to the raingarden soakaways in this development. A tap on the water butt will allow the water to be used for gardening or car washing etc. and reduce demand on the local authority water supply whilst also slightly reducing the roof runoff entering the surface water sewer. See the accompanying WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-002 for an example of a water butt.

4.0 Wastewater Drainage

The layout of the proposed wastewater drainage network for the development is shown on WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-002 and the typical details for the wastewater infrastructure are shown on drawing no. 23028-XX-XX-XX-DR-WDG-CE-501. 1 conventional piped, gravity sewer network is proposed. The network will generally fall from the north to the south where it will connect to existing Irish Water infrastructure near the junction of the R619 and the L-96192-11 just south of the site.

All sewers within the curtilage of individual houses are to be installed in accordance with TGD Part H (2010) and will consist of 100 mm diameter uPVC Sewers from individual houses laid to falls of min 1:60 to connect to a 150mm and 225mm uPVC sewer to be laid under the estate road. Inspection chambers will be constructed within 1m of the boundary of each private property in accordance with Irish Water Standard Details.

All wastewater sewers in the public realm have been designed in compliance with Irish Water's Code of Practice for Wastewater Infrastructure – A Design and Construction Guide for Developers (Revision 2) July 2020. All construction details within the public realm will be in accordance with Irish Water, Wastewater Infrastructure Standard Details (Revision 4), July 2020.

A pre-connection enquiry was submitted to Irish Water to assess the feasibility of providing a connection to the site and Irish Water subsequently issued a confirmation of feasibility for the development (see Appendix C). A wastewater connection for the site is feasible without infrastructure upgrade by Irish Water.

4.1. Wastewater Design Criteria

For the purposes of clarity, the wastewater sewer system has been designed using the following parameters, as required in Irish Water document IW-CDS-5030-03 Section 3.6:

•	Flow per person:	150 L/day
•	Average persons per household:	2.7 persons
•	Unit consumption allowance (infiltration)	10%
•	Minimum velocity for pipe running full:	0.75 m/sec
•	Peak flow:	6 DWF

The population equivalent (PE) for the development is: 26 dwellings x 2.7 = 70.

The detailed hydraulic design parameters and calculations for the wastewater network are included in Appendix B to this document.

5.0 Water Supply

It is proposed that a connection to the existing Irish Water infrastructure will be made in the R619 just outside the development entrance. The water main layout is shown on WDG drawing no. 23028-XX-XX-XX-DR-WDG-CE-003 and the water main typical details are shown on drawings 23028-XX-XX-XX-DR-WDG-CE-502 and 23028-XX-XX-XX-DR-WDG-CE-503.

A pre-connection enquiry was submitted to Irish Water to assess the feasibility of providing a connection to the site. Irish Water issued a confirmation of feasibility for the development confirming that a connection is feasible without infrastructure upgrades by Irish Water (see Appendix C).

Private properties will each have a separate service connection, fitted with an Irish Water approved boundary box immediately outside the boundary. Fire hydrants are placed so that no domestic property within the development is more than 46m from a hydrant. All potable water infrastructure will be constructed in accordance with the following Irish Water documents:

- IW-CDS-5020-03 Code of Practice for Water Infrastructure Connections and Developer Services, July 2020 (Revision 2),
- IW-CDS-5020-01 Water Infrastructure Standard Details Connections and Developer Services, July 2020 (Revision 4).

5.1. Water Demand

The mains water demand for the development is calculated, according to Irish Water criteria, using the following parameters:

- 150 litres/person/day,
- 2.7 persons per housing unit,
- Domestic ADPW = 1.25,
- 26 Housing Units.

6.0 Utilities

6.1. Electricity

Overhead power lines cross the development site and an NW1 form was submitted to the ESB requesting a rerouting of this infrastructure around the site to allow development.

Any works on site shall be carried out in accordance with the following ESB document:

• Safe Construction with Electricity.

6.2. Gas

Gas Networks Ireland was contacted regarding the gas supply services in the vicinity of the proposed development site. GNI responded with a map to show that there are no gas mains in the vicinity, see Appendix D.

Appendix A

Surface Water Design

• Surface Water Sewer Network Design (see drawing 23028-XX-XX-XX-DR-WDG-CE-002)

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	5	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	Scotland and Ireland	Connection Type	Level Soffits
M5-60 (mm)	15.900	Minimum Backdrop Height (m)	1.000
Ratio-R	0.200	Preferred Cover Depth (m)	1.000
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S1	0.036	5.00	75.700	1200	545783.689	573574.936	1.225
S2			75.700	1200	545801.661	573555.760	1.380
S3	0.032	5.00	75.700	1200	545812.119	573565.550	1.465
S4	0.083	5.00	75.700	1200	545826.388	573555.326	1.569
S5			75.350	1200	545862.918	573515.806	1.536
S6	0.020	5.00	75.000	1200	545869.463	573489.016	1.225
S7	0.055	5.00	75.114	1200	545857.409	573501.985	1.444
S8			73.546	1200	545837.223	573483.488	1.746
S9	0.042	5.00	75.582	1200	545791.662	573558.554	1.225
S10	0.012	5.00	75.404	1200	545786.542	573553.808	1.225
S11	0.074	5.00	75.059	1200	545796.266	573543.080	1.225
S12			74.000	1200	545772.209	573520.480	1.225
S13	0.009	5.00	74.100	1200	545784.419	573506.006	1.437
S14	0.009	5.00	73.000	1200	545802.728	573484.369	1.225
S15			72.131	1500	545821.495	573466.160	1.831
S16			71.003	1200	545809.574	573454.818	2.603
S17			68.587	1200	545813.518	573435.772	1.225

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	S1	S2	26.282	0.600	74.475	74.320	0.155	169.6	225	5.44	49.1
1.001	S2	S3	14.325	0.600	74.320	74.235	0.085	168.5	225	5.68	48.4
1.002	S3	S4	17.554	0.600	74.235	74.131	0.104	168.8	225	5.97	47.6
1.003	S4	S5	53.817	0.600	74.131	73.814	0.317	169.8	225	6.86	45.3
1.004	S5	S7	14.878	0.600	73.814	73.670	0.144	103.3	225	7.06	44.8
2.000	S6	S7	17.705	0.600	73.775	73.670	0.105	168.6	225	5.29	49.5
1.005	S7	S8	27.379	0.600	73.670	72.300	1.370	20.0	225	7.21	44.5

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	1.001	39.8	4.8	1.000	1.155	0.036	0.0	52	0.678
1.001	1.004	39.9	4.7	1.155	1.240	0.036	0.0	52	0.680
1.002	1.003	39.9	8.8	1.240	1.344	0.068	0.0	72	0.809
1.003	1.000	39.8	18.5	1.344	1.311	0.151	0.0	108	0.982
1.004	1.286	51.1	18.3	1.311	1.219	0.151	0.0	93	1.180
2.000	1.004	39.9	2.7	1.000	1.219	0.020	0.0	39	0.572
1.005	2.940	116.9	27.2	1.219	1.021	0.226	0.0	73	2.404

				Walsh	Desig	gn Group			File: (COA	CHFOF	D_MOE	EL_01.	Page 2	
C A I I				The Ma	all, M	aryborou	ıgh,		Netw	ork:				Residenti	al Development
CAU	SEV	VAT		Dougla	s.		0,		IR					Coachford	d
			_	Cork	-,				04/03	3/20	24			Co. Cork	
									0.70	-/ - 0					
								Lin	<u>ks</u>						
	Name	US	DS	Leng	th	ks (mm)	/ US	IL	DS	IL	Fall	Slop	e Dia	T of C	Rain
		Node	Node	e (m)	n	(m	n)	(m)	(m)	(1:X) (mm)	(mins)	(mm/hr)
	1.006	S8	S15	23.4	02	0.60	0 71.8	300	70.9	00	0.900) 26.) 225	7.36	44.1
	3.000	S9	S10	6.9	81	0.60	0 74.3	357	74.1	79	0.178	39.	2 225	5.06	50.0
	3.001	S10	S11	14.4	79	0.60	0 74.1	179	73.8	34	0.345	42 .) 225	5.17	49.9
	3.002	S11	S12	33.0	07	0.60	0 73.8	334	72.7	75	1.059	31.	2 225	5.41	49.2
	3.003	S12	S13	18.9	36	0.60	0 72.7	775	72.6	63	0.112	169.	1 225	5.72	48.3
	3.004	S13	S14	28.3	44	0.60	0 72.6	563	71.7	75	0.888	31.	9 225	5.93	47.7
	3.005	S14	S15	26.1	49	0.60	0 71.7	775	70.9	00	0.875	29.	9 225	6.11	47.2
	1.007	S15	S16	16.4	55	0.60	0 70.3	300	69.7	78	0.522	31.	5 225	7.48	43.9
	1.008	S16	S17	19.4	50	0.60	0 68.4	100	67.3	62	1.038	3 18.	7 225	7.59	43.6
		Nan	10		Can	Flow	115		ns	۲ ۷	roa	2 V 4 4	Pro	Pro	
		INGI	/.	n/c		(1/c)	Donth	Р	onth	2 A /k	al Ca		Donth	Volocity	
			U,	11/5/	1/5/	(1/5)	(m)		eptii m)	U.	aj	(1/c)	(mm)	(m/c)	
		1.00	nc n	F76 4	02 4	27.0	(III) 1 E 2 4	1	006	0	226	(1/5)	(mm) 70	2 1 9 2	
		1.00	2 or	.5/6 1	02.4	27.0	1.521	1	.006	0.	226	0.0	/9	2.183	
		3.00	10 2	.095	83.3	5.7	1.000	1	.000	0.	042	0.0	40	1.215	
		3.00)1 2	.025	80.5	7.3	1.000	1	.000	0.	054	0.0	45	1.264	

		-					-	
2.025	80.5	7.3	1.000	1.000	0.054	0.0	45	
2.351	93.5	17.1	1.000	1.000	0.128	0.0	65	
1.002	39.9	16.7	1.000	1.212	0.128	0.0	102	
2.324	92.4	17.7	1.212	1.000	0.137	0.0	66	
2.402	95.5	18.7	1.000	1.006	0.146	0.0	67	
2.338	93.0	44.2	1.606	1.000	0.372	0.0	109	

1.796

0.959

1.801

1.875

2.311

2.801

94

3.002

3.003

3.004

3.005

1.007

1.008

Pipeline Schedule

3.036 120.7 44.0 **2.378** 1.000 0.372 0.0

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
1.000	26.282	169.6	225	Circular	75.700	74.475	1.000	75.700	74.320	1.155
1.001	14.325	168.5	225	Circular	75.700	74.320	1.155	75.700	74.235	1.240
1.002	17.554	168.8	225	Circular	75.700	74.235	1.240	75.700	74.131	1.344
1.003	53.817	169.8	225	Circular	75.700	74.131	1.344	75.350	73.814	1.311
1.004	14.878	103.3	225	Circular	75.350	73.814	1.311	75.114	73.670	1.219
2.000	17.705	168.6	225	Circular	75.000	73.775	1.000	75.114	73.670	1.219
1.005	27.379	20.0	225	Circular	75.114	73.670	1.219	73.546	72.300	1.021
1.006	23.402	26.0	225	Circular	73.546	71.800	1.521	72.131	70.900	1.006
3.000	6.981	39.2	225	Circular	75.582	74.357	1.000	75.404	74.179	1.000
3.001	14.479	42.0	225	Circular	75.404	74.179	1.000	75.059	73.834	1.000
3.002	33.007	31.2	225	Circular	75.059	73.834	1.000	74.000	72.775	1.000

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	S1	1200	Manhole	Adoptable	S2	1200	Manhole	Adoptable
1.001	S2	1200	Manhole	Adoptable	S3	1200	Manhole	Adoptable
1.002	S3	1200	Manhole	Adoptable	S4	1200	Manhole	Adoptable
1.003	S4	1200	Manhole	Adoptable	S5	1200	Manhole	Adoptable
1.004	S5	1200	Manhole	Adoptable	S7	1200	Manhole	Adoptable
2.000	S6	1200	Manhole	Adoptable	S7	1200	Manhole	Adoptable
1.005	S7	1200	Manhole	Adoptable	S8	1200	Manhole	Adoptable
1.006	S8	1200	Manhole	Adoptable	S15	1500	Manhole	Adoptable
3.000	S9	1200	Manhole	Adoptable	S10	1200	Manhole	Adoptable
3.001	S10	1200	Manhole	Adoptable	S11	1200	Manhole	Adoptable
3.002	S11	1200	Manhole	Adoptable	S12	1200	Manhole	Adoptable

Flow+ v10.8 Copyright © 1988-2024 Causeway Technologies Ltd

AUSEW		Wa The Dou Cor	lsh Desig Mall, Ma uglas, K	n Group aryborough	ı,	File: CO/ Networl IR 04/03/2	ACHFORD_N <: 024	10DEL_	_01.	Page 3 Residenti Coachfor Co. Cork	al Developm d	ent
				<u> </u>	Pipeline S	chedule						
Link	Length (m)	Slope (1·X)	Dia (mm)	Link	US CL	US IL (m)	US Depth (m)	DS (CL I	DS IL [(m)	OS Depth	
3 003	18 936	169 1	225	Circular	74 000	72 775	1 000	74 1) 00 7	2 663	1 212	
3.003	28 3//	21.0	225	Circular	74.000	72.663	1 212	73.0	00 7	2.005	1 000	
3.004	26.344	20 0	225	Circular	73.000	72.005	1.212	73.0	21 7	0.900	1.000	
1 007	16 / 55	20.0	225	Circular	72 121	70 300	1.000	72.1	03 6	0.500 9 778	1,000	
1.008	19.450	18.7	225	Circular	71.003	68.400	2.378	68.5	87 <u>6</u>	7.362	1.000	
	Link	US	Dia	Node	МН	DS	Dia	Node	e	мн		
		Node	(mm)	Туре	Туре	Nod	e (mm)	Туре	9	Туре		
	3.003	S12	1200	Manhole	Adoptab	le S13	1200	Manho	ole A	doptable		
	3.004	S13	1200	Manhole	Adoptab	le S14	1200	Manho	ole 🗛	doptable		
	3.005	S14	1200	Manhole	Adoptab	le S15	1500	Manho	ole A	doptable		
	1.007	S15	1500	Manhole	Adoptab	le S16	1200	Manho	ole A	doptable		
	1.008	S16	1200	Manhole	Adoptab	ole S17	1200	Manho	ole A	doptable		
				<u> </u>	Manhole	Schedule						
Node	Eastin	g ľ	Northing	CL	Depth	Dia	Connect	ions	Link	: IL	Dia	
	(m)		(m)	(m)	(m)	(mm)				(m)	(mm)	
S1	545783.	689 57	73574.93	6 75.700	1.225	1200						
							\bigcirc					
							ų,					
							0	0	1.000	0 74.47	5 225	
S2	545801.	661 57	73555.76	0 75.700	1.380	1200	1 0	1	1.000	0 74.32	0 225	
							. X					
							\bigcirc					
								0	1.00	1 74.32	0 225	
S 3	545812.	119 57	73565.55	0 75.700	1.465	1200		1	1.00	1 74.23	5 225	
							\bigcirc					
							\searrow					
							1 70	0	1.002	74.23	5 225	
54	545826	388 57	73555 32	6 75 700	1 569	1200		1	1 002	2 74 13	1 225	
5.	2.2020	57	2000.02			00	1	-				
							\bigtriangledown					
							0 1	Λ	1 00:	3 74 1 2	1 225	
55	545862	918 57	73515 80	6 75.350	1.536	1200		1	1.00	3 73.81	4 225	
55	5.5002.	-10 57	5515.00	, , , , , , , , , , , , , , , , , , , ,	1.550	1200	1	Ŧ	1.00.	, 5.01	. 225	
							$\left(\right)$					
								0	1 00/	1 72 91	1 225	
56	E1E860	162 57	72/100 01	6 75 000	1 225	1200	•	0	1.00	+ 75.01	4 223	
30	545609.4	405 57	5469.01	0 75.000	1.225	1200	°					
							()					
							\smile	0	2 000	רד כד ח	E 325	
<u> </u>		400 57	72504 00	F 7F 44 4	1 4 4 4	1200		0	2.000		J 225	
57	545857.4	409 57	3201.98	5 /5.114	1.444	1200	_/2	1	2.000	J /3.6/	U 225	
							$\langle X \rangle$	2	1.004	4 73.67	U 225	
							04	-			• • • • •	
							•	0	1.00	5 73.67	0 225	
58	545837.	223 57	/3483.48	8 73.546	1.746	1200	1,	1	1.00	5 72.30	0 225	
50							\propto					
30												
50							X					

	Walsh Design Group	File: COACHFORD_MODEL_01.	Page 4
2	The Mall, Maryborough,	Network:	Residential Development
	Douglas,	IR	Coachford
	Cork	04/03/2024	Co. Cork

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)	
S9	545791.662	573558.554	75.582	1.225	1200	\mathcal{Q}				
						0	3.000	74.357	225	
S10	545786.542	573553.808	75.404	1.225	1200		3.000	74.179	225	
						0	3.001	74.179	225	
S11	545796.266	573543.080	75.059	1.225	1200		3.001	73.834	225	
						0	3.002	73.834	225	
S12	545772.209	573520.480	74.000	1.225	1200		3.002	72.775	225	
						0 0	3.003	72.775	225	
S13	545784.419	573506.006	74.100	1.437	1200		3.003	72.663	225	
						° 0	3.004	72.663	225	
S14	545802.728	573484.369	73.000	1.225	1200		3.004	71.775	225	
	- 45004 405		70.404		4500	0	3.005	71.775	225	
515	545821.495	573466.160	72.131	1.831	1500		3.005	70.900 70.900	225	
						0	1.007	70.300	225	
S16	545809.574	573454.818	71.003	2.603	1200		1.007	69.778	225	
647	545042 540	572425 772	60 507	4 225	1200	<u> </u>	1.008	68.400	225	
517	545813.518	573435.772	68.587	1.225	1200		1.008	67.362	225	
			<u>Si</u>	mulation	Setting	5				
	Rainfall Me	thodology F	SR			Analysis S	peed N	Normal		
	F	SR Region Sc	cotland ar	nd Ireland		Skip Steady	State >			
M5-60 (mm) 15.900 Drain Down Time (mins) 500										
	-	Ratio-R 0.	200		Ad	ditional Storage (m	ı³/ha) 2	2.0		
	S	ummer CV 0. Winter CV 0.	750 840		0	спеск Discharge Ra Check Discharge Vo	ite(s) > lume >	(
			9	Storm Du	rations					
15	30 60	120 1	180 2	.40 3	60	480 600 7	720	960 1	1440	

CAUSEWAY 🛟	Walsh Desig The Mall, M Douglas, Cork	n Group aryborough,	File: COACHFC Network: IR 04/03/2024	DRD_MOD	EL_01. Page 5 Residentia Coachforc Co. Cork	al Development
Re	turn Period	Climate Change	Additional Are	a Additi	onal Flow	
	(years)	(CC %) 20	(A %)	0		
	30	20		0	0	
	100	20		0	0	
		Node S15 Online H	ydro-Brake [®] Co	<u>ntrol</u>		
FI	ap Valve x		Objectiv	e (HE) M	linimise upstream s	torage
Replaces Downstre	eam Link √		Sump Availabl	e√		
Invert L	.evel (m) 70	0.300	Product Numbe	er CTL-SH	IE-0136-1010-1700	-1010
Design De	2ptn(m) = 1.	700 IVIIn Ou 1 Min Nod	e Diameter (m	1) 0.150		
Designi	10W (1/3) 10	Iode S3 Link Surrou	und Storage Stru			
Deep lef Coofficient /m	<u></u>		Deresitu		1 in le	1 001
Base Inf Coefficient (m Side Inf Coefficient (m	/nr) 0.0200 (hr) 0.0200)0 Ir	Porosity	0.30	LINK Surround Shane	1.001 (Trench)
Side in coencient (in Safety Fa	ctor 2.0	Time to half	empty (mins)	2	Diameter (mm)	1000
		I	.,.,		· · ·	
	<u>N</u>	<u>lode S4 Link Surrou</u>	ind Storage Stru	<u>icture</u>		
Base Inf Coefficient (m	/hr) 0.0200	00	Porosity	0.30	Link	1.002
Side Inf Coefficient (m	/hr) 0.0200)0 Ir	vert Level (m)	74.131	Surround Shape	(Trench)
Safety Fa	ctor 2.0	Time to half	empty (mins)	3	Diameter (mm)	1000
	Δ	lode S5 Link Surrou	Ind Storage Stru	<u>icture</u>		
Base Inf Coefficient (m	/hr) 0.0200	00	Porosity	0.30	Link	1.003
Side Inf Coefficient (m	/hr) 0.0200)0 Ir	vert Level (m)	73.814	Surround Shape	(Trench)
Safety Fa	ctor 2.0	Time to half	empty (mins)	0	Diameter (mm)	1000
	Δ	<u>Iode S7 Link Surrou</u>	ind Storage Stru	<u>icture</u>		
Base Inf Coefficient (m	/hr) 0.0200	00	Porosity	0.30	Link	2.000
Side Inf Coefficient (m	/hr) 0.0200)0 In	ivert Level (m)	73.670	Surround Shape	(Trench)
Safety Fa	ctor 2.0	Time to half	empty (mins)	0	Diameter (mm)	1000
	Δ	<u>lode S8 Link Surrou</u>	ind Storage Stru	<u>icture</u>		
Base Inf Coefficient (m	/hr) 0.0200	00	Porosity	0.30	Link	1.005
Side Inf Coefficient (m	/hr) 0.0200)0 Ir	vert Level (m)	72.300	Surround Shape	(Trench)
Safety Fa	ctor 2.0	Time to half	empty (mins)	0	Diameter (mm)	1000
	N	ode S13 Link Surro	und Storage Stru	<u>ucture</u>		
Base Inf Coefficient (m	/hr) 0.0200	00	Porosity	0.30	Link	3.003
Side Inf Coefficient (m	/hr) 0.0200)0 Ir	vert Level (m)	72.663	Surround Shape	(Trench)
Safety Fa	ctor 2.0	Time to half	empty (mins)	0	Diameter (mm)	1000
	<u>N</u>	ode S14 Link Surro	und Storage Stru	<u>ucture</u>		
Base Inf Coefficient (m	/hr) 0.0200	00	Porosity	0.30	Link	3.004
Side Inf Coefficient (m	/hr) 0.0200)0 Ir	, ivert Level (m)	71.775	Surround Shape	(Trench)
Safety Fa	ctor 2.0	Time to half	empty (mins)	0	Diameter (mm)	1000

	Walsh Design Gr	oup	File: COACHFORD_MODEL_01. Page 6						
	The Mall, Maryb	orough,	Network:			Residentia	al Development		
CAUSEVVAI 🤛	Douglas,		IR			Coachford	ł		
	Cork		04/03/2024			Co. Cork			
	<u>Node</u>	S15 Link Surrou	ind Storage St	<u>ructure</u>					
Base Inf Coefficient (n	n/hr) 0.02000		Porosity	0.30		Link	3.005		
Side Inf Coefficient (n	n/hr) 0.02000	In	vert Level (m)	70.900	Surro	ound Shape	(Trench)		
Safety Fa	actor 2.0	Time to half	empty (mins)	180	Dian	neter (mm)	1000		
	Node	S15 Link Surrou	ind Storage St	<u>ructure</u>					
Base Inf Coefficient (n	n/hr) 0.02000		Porosity	0.30		Link	1.006		
Side Inf Coefficient (n	n/hr) 0.02000	In	vert Level (m)	70.900	Surro	ound Shape	(Trench)		
Safety Fa	actor 2.0	Time to half	empty (mins)	180	Dian	neter (mm)	1000		
	Node	S15 Donth/Ar	aa Storago Stri	ucture					
	Noue	sis Depti/Al	ca Storage Stri						
Base Inf Coefficien	t (m/hr) 0.0200	0 Safety Fa	ctor 2.0	Ir	nvert l	Level (m)	71.500		
Side Inf Coefficien	t (m/hr) 0.0200	0 Porc	osity 1.00	Time to hal	femp	ty (mins)	84		
					_				
Depth (m)	Area Inf Area	Depth Are	ea Inf Area	Depth /	Area	Inf Area			
(m) 0.000	(m ⁻) (m ⁻)	(m) (m	-) (m-)	(m)	(m-)	(m-) 270 2			
0.000 3	500.0 500.0	0.500 576	5.2 576.2	0.501	0.0	576.2			

Results for 1 year +20% CC Critical Storm Duration. Lowest mass balance: 96.37%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S1	10	74.525	0.050	4.3	0.0599	0.0000	ОК
15 minute winter	S2	11	74.369	0.049	4.2	0.0552	0.0000	ОК
15 minute winter	S3	11	74.302	0.067	7.8	0.1737	0.0000	ОК
15 minute winter	S4	11	74.236	0.105	17.1	0.3601	0.0000	ОК
15 minute winter	S5	12	73.908	0.094	16.8	0.2921	0.0000	ОК
15 minute winter	S6	10	73.812	0.037	2.4	0.0427	0.0000	ОК
15 minute winter	S7	12	73.741	0.071	24.1	0.1932	0.0000	ОК
15 minute winter	S8	12	71.874	0.074	23.9	0.0833	0.0000	ОК
15 minute winter	S9	10	74.395	0.038	5.0	0.0461	0.0000	ОК
15 minute winter	S10	10	74.221	0.042	6.4	0.0489	0.0000	OK
15 minute winter	S11	10	73.895	0.061	15.1	0.0758	0.0000	ОК
15 minute winter	S12	11	72.874	0.099	14.9	0.1123	0.0000	ОК
15 minute winter	S13	11	72.727	0.064	15.9	0.1636	0.0000	ОК
15 minute winter	S14	11	71.839	0.064	16.9	0.0896	0.0000	ОК
60 minute winter	S15	48	71.529	1.229	27.8	14.3526	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(l/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	S1	1.000	S2	4.2	0.659	0.105	0.1674	
15 minute winter	S2	1.001	S3	4.2	0.521	0.105	0.1155	
15 minute winter	S3	1.002	S4	7.7	0.557	0.194	0.2451	
15 minute winter	S3	Infiltration		0.0				
15 minute winter	S4	1.003	S5	16.8	1.009	0.422	0.8963	
15 minute winter	S4	Infiltration		0.1				
15 minute winter	S5	1.004	S7	16.5	1.258	0.323	0.1957	
15 minute winter	S5	Infiltration		0.1				
15 minute winter	S6	2.000	S7	2.3	0.356	0.058	0.1303	
15 minute winter	S7	1.005	S8	23.9	2.281	0.204	0.2867	
15 minute winter	S7	Infiltration		0.0				
15 minute winter	S8	1.006	S15	23.9	1.626	0.234	0.5974	
15 minute winter	S8	Infiltration		0.0				
15 minute winter	S9	3.000	S10	5.0	1.027	0.060	0.0338	
15 minute winter	S10	3.001	S11	6.3	0.922	0.078	0.0997	
15 minute winter	S11	3.002	S12	14.9	1.190	0.159	0.4177	
15 minute winter	S12	3.003	S13	14.9	1.140	0.373	0.2485	
15 minute winter	S13	3.004	S14	15.9	1.711	0.172	0.2634	
15 minute winter	S13	Infiltration		0.0				
15 minute winter	S14	3.005	S15	16.8	1.455	0.176	0.6405	
15 minute winter	S14	Infiltration		0.0				
60 minute winter	S15	Hydro-Brake [®]	S16	10.1				
60 minute winter	S15	Infiltration		0.1				
60 minute winter	S15	Infiltration		0.1				
60 minute winter	S15	Infiltration		0.5				

Results for 1 year +20% CC Critical Storm Duration. Lowest mass balance: 96.37%

Node Event		US Node	Pe (mi	ak ins)	Lev (n	vel n)	Dep (m	th)	Inflow (I/s)	v N Vo	ode (m³)	Flood (m³)	Status
15 minute summ	er	S16		9	68.4	445	0.04	15	10.1	. 0.	0508	0.0000	ОК
180 minute winte	er	S17		80	67.4	406	0.04	14	10.1	. 0.	0000	0.0000	ОК
Link Event (Upstream Depth)	US Nod	Li le	nk	DS Nod	i le	Outfl (I/s	ow)	Velo (m	ocity I/s)	Flow,	'Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	S16	1.0	800	S17		1	0.1	1	.825	0	.084	0.1074	18.3

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 96.37%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S1	10	74.551	0.076	9.4	0.0902	0.0000	ОК
15 minute winter	S2	11	74.394	0.074	9.3	0.0835	0.0000	ОК
15 minute winter	S3	11	74.339	0.104	17.4	0.3457	0.0000	ОК
15 minute winter	S4	11	74.310	0.179	38.1	0.7696	0.0000	ОК
15 minute winter	S5	12	73.966	0.152	37.1	0.6468	0.0000	ОК
15 minute winter	S6	10	73.829	0.054	5.2	0.0630	0.0000	ОК
15 minute winter	S7	11	73.782	0.112	54.0	0.3963	0.0000	ОК
15 minute winter	S8	12	71.940	0.140	53.0	0.1585	0.0000	ОК
15 minute winter	S9	10	74.416	0.059	11.0	0.0704	0.0000	ОК
15 minute winter	S10	10	74.242	0.063	14.0	0.0727	0.0000	ОК
15 minute winter	S11	10	73.926	0.092	33.3	0.1151	0.0000	ОК
15 minute winter	S12	10	72.933	0.158	33.1	0.1790	0.0000	ОК
15 minute winter	S13	11	72.763	0.100	34.9	0.3229	0.0000	ОК
15 minute winter	S14	11	71.873	0.098	37.4	0.1501	0.0000	ОК
180 minute winter	S15	136	71.661	1.361	32.9	58.7306	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	S1	1.000	S2	9.3	0.806	0.233	0.3024	
15 minute winter	S2	1.001	S3	9.3	0.637	0.232	0.2100	
15 minute winter	S3	1.002	S4	17.1	0.653	0.428	0.4551	
15 minute winter	S3	Infiltration		0.0				
15 minute winter	S4	1.003	S5	37.1	1.199	0.933	1.6631	
15 minute winter	S4	Infiltration		0.1				
15 minute winter	S5	1.004	S7	36.6	1.525	0.715	0.3570	
15 minute winter	S5	Infiltration		0.1				
15 minute winter	S6	2.000	S7	5.1	0.423	0.128	0.2374	
15 minute winter	S7	1.005	S8	53.0	2.800	0.454	0.5198	
15 minute winter	S7	Infiltration		0.1				
15 minute winter	S8	1.006	S15	53.2	1.607	0.519	0.7695	
15 minute winter	S8	Infiltration		0.0				
15 minute winter	S9	3.000	S10	10.9	1.264	0.131	0.0605	
15 minute winter	S10	3.001	S11	14.0	1.152	0.173	0.1763	
15 minute winter	S11	3.002	S12	33.1	1.459	0.354	0.7443	
15 minute winter	S12	3.003	S13	32.7	1.391	0.821	0.4432	
15 minute winter	S13	3.004	S14	35.2	2.103	0.381	0.4748	
15 minute winter	S13	Infiltration		0.1				
15 minute winter	S14	3.005	S15	37.2	1.452	0.390	0.7363	
15 minute winter	S14	Infiltration		0.0				
180 minute winter	S15	Hydro-Brake [®]	S16	10.1				
180 minute winter	S15	Infiltration		0.1				
180 minute winter	S15	Infiltration		0.1				
180 minute winter	S15	Infiltration		0.9				

Results for 30 year +20% CC Critical Storm Duration. Lowest mass balance: 96.37%

Node Event		US Node	Pea (mi	ak ns)	Leve (m)	l De (r	pth n)	Inflow (I/s)	v Node Vol (m³)	Flood (m³)	Status
60 minute summ	er	S16		21	68.44	5 0.0	045	10.1	0.0508	0.0000	ОК
60 minute summ	er	S17		21	67.40	6 0.0	044	10.1	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Noc	6 Li Je	nk	DS Nod	Oı e	utflow (I/s)	Vel (n	ocity n/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
60 minute summer	S16	1.0	008	S17		10.1	1	L.826	0.084	0.1075	74.3

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 96.37%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S1	10	74.562	0.087	12.2	0.1040	0.0000	ОК
15 minute winter	S2	10	74.405	0.085	12.0	0.0959	0.0000	ОК
15 minute winter	S3	12	74.398	0.163	22.7	0.6153	0.0000	ОК
15 minute winter	S4	12	74.374	0.243	47.6	1.1332	0.0000	SURCHARGED
15 minute winter	S5	12	73.985	0.171	43.5	0.7980	0.0000	ОК
15 minute winter	S6	10	73.837	0.062	6.8	0.0721	0.0000	ОК
15 minute winter	S7	11	73.797	0.127	65.5	0.4819	0.0000	ОК
30 minute summer	S8	19	71.972	0.172	64.5	0.1948	0.0000	ОК
15 minute winter	S9	10	74.425	0.068	14.2	0.0812	0.0000	ОК
15 minute winter	S10	10	74.252	0.073	18.2	0.0835	0.0000	OK
15 minute winter	S11	10	73.940	0.106	43.2	0.1331	0.0000	ОК
15 minute winter	S12	11	72.967	0.192	42.8	0.2169	0.0000	ОК
15 minute winter	S13	11	72.776	0.113	45.2	0.3973	0.0000	ОК
15 minute winter	S14	11	71.908	0.133	48.6	0.2215	0.0000	ОК
180 minute winter	S15	140	71.743	1.443	42.0	88.8049	0.0000	SURCHARGED

			outilow	velocity	Flow/Cap	LIIIK	Discharge
(Upstream Depth) No	de	Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter S1	1.000	S2	12.0	0.861	0.302	0.3668	
15 minute winter S2	1.001	S3	11.9	0.648	0.299	0.3156	
15 minute winter S3	1.002	S4	20.3	0.648	0.509	0.6190	
15 minute winter S3	Infiltration		0.0				
15 minute winter S4	1.003	S5	43.5	1.218	1.093	1.9422	
15 minute winter S4	Infiltration		0.1				
15 minute winter S5	1.004	S7	43.1	1.611	0.842	0.4098	
15 minute winter S5	Infiltration		0.1				
15 minute winter S6	2.000	S7	6.7	0.452	0.168	0.2810	
15 minute winter S7	1.005	S8	65.2	2.932	0.558	0.6087	
15 minute winter S7	Infiltration		0.1				
30 minute summer S8	1.006	S15	64.4	1.668	0.629	0.8470	
30 minute summer S8	Infiltration		0.0				
15 minute winter S9	3.000	S10	14.1	1.341	0.170	0.0736	
15 minute winter S10	0 3.001	S11	18.1	1.231	0.225	0.2135	
15 minute winter S12	1 3.002	S12	42.8	1.538	0.458	0.8986	
15 minute winter S12	2 3.003	S13	42.3	1.477	1.062	0.5309	
15 minute winter S13	3 3.004	S14	45.7	2.133	0.495	0.6297	
15 minute winter S13	3 Infiltration		0.1				
15 minute winter S14	4 3.005	S15	48.1	1.589	0.503	0.8394	
15 minute winter S14	4 Infiltration		0.0				
180 minute winter S15	5 Hydro-Brake [®]	S16	10.0				
180 minute winter S15	5 Infiltration		0.1				
180 minute winter S15	5 Infiltration		0.1				
180 minute winter S15	5 Infiltration		1.0				

Flow+ v10.8 Copyright © 1988-2024 Causeway Technologies Ltd

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 96.37%

Node Event		US Node	P (n	eak nins)	Le (r	vel n)	Dep (n	oth 1)	Inflov (I/s)	v v	Node ′ol (m³)	Flood (m³)	Status
30 minute winte	er	S16		8	68.	445	0.0	45	10.	1	0.0508	0.0000	ОК
60 minute sumn	ner	S17		15	67.	406	0.0	44	10.	1	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Noc	6 L de	ink	DS Nod	e	Outfle (I/s	ow)	Vel (m	ocity n/s)	Flov	v/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute winter	S16	1.	800	S17		10	0.1	1	.826		0.084	0.1075	77.6

Node Name \$1 \$2 \$3 \$4 \$5 A4 drawing Image: State	CAUSE	CAUSEWAY CON Walsh Design The Mall, Mai Douglas, Cork		oup orough,		File: COACHF Network: IR 04/03/2024	ORD_MODEL_01.pfd	Page 1 Residential Development Coachford Co. Cork		
A4 drawing	Node Name	S1		S2	S3		S4		S	5
Hor Scale 500 Ver Scale 100 Image: Constraint of the second s	A4 drawing									
Datum (m) 69.000 Image: Constraint of the second seco	Hor Scale 500 Ver Scale 100									
Datum (m) 69.000 Image: constraint of the system Image: constrater Image: constraint of the system										
Link Name 1.000 1.001 1.002 1.003 Incom	Datum (m) 69.000		4.000		_	4.000		1.000		
Section type 225mm	Link Name		1.000	1.001	_	1.002		1.003		
Note (1:v) Note (1	Section Type		160.6	225mm	_	169.9		225IIIII 160.9		
Invert Feder (m) 75.700 <	Slope (1.X)	-	109.0	106.5		100.0		109.8		
Invert Fedel (m) 74.320 73.814 73.814		75.70(75.70(75.70(75.70(75.35(
	Invert Level (m)	74.475	74.320	74.320	74.235	74.131	74.131		73.814	
Length (m) 26.282 14.325 17.554 53.817	Length (m)		26.282	14.325		17.554		53.817		

		Walsh Design Group The Mall, Maryborough, Douglas, Cork	File: COACHFORD_I Network: IR 04/03/2024	MODEL_01.pfd	Page 2 Residential Development Coachford Co. Cork
Node Name	\$5	57	58	\$15	
A4 drawing					
Ver Scale 100					
Datum (m) 67.000					
Link Name	1.004	1.005	1.006		
Section Type	225mn	n 225mm	225mm		
Slope (1:X)	103.3	20.0	26.0		
Cover Level (m)	. 75.350	75.114	73.546	72.131	
Invert Level (m)	73.814	73.670	72.300	70.900	
Length (m)	14.878	3 27.379	23.402		
		Elow+ v10.8	Convright © 1988-2024 Causeway Tech	nologies I td	

CAUSEWAY	Walsh Design Group The Mall, Maryborough, Douglas, Cork	File: COACHFORD_MODEL_0 Network: IR 04/03/2024	01.pfd	Page 3 Residential Development Coachford Co. Cork
Node Name		S15	S16	S17
A4 drawing				
Hor Scale 500 Ver Scale 100				
Datum (m) 64.000				
Link Name		1.007	,	1.008
Section Type		225mr	n	225mm
Slope (1:X)		31.5		18.7
Cover Level (m)		72.131	71.003	68.587
Invert Level (m)		70.300	69.778	67.362
Length (m)		16.45	5	19.450
	Elow+ v10.8 Convrigh	t @ 1988-2024 Causeway Technologias I	td	

	Walsh Design Group The Mall, Maryborough, Douglas, Cork	File: COACHFORD_I Network: IR 04/03/2024	MODEL_01.pfd	Page 4 Residential Development Coachford Co. Cork
Node Name		S6	S7	
			- m	
A4 drawing				
Hor Scale 500				
Ver Scale 100				
Datum (m) 69.000				
Link Name		2.000		
Section Type		225mm		
Slope (1:X)		168.6		
Cover Level (m)		8	4	
		00.0	.11	
		75	75	
l Invert Lovel (m)		10	0	
		17.	67(
		73.	73.	
Length (m)		17.705		
	Flow+ v10.8 Copyright © 1	988-2024 Causeway Techr	nologies Ltd	

CAUSEW		Walsh Design Gi The Mall, Maryk Douglas, Cork	roup borough,	File: COACHFORD_ Network: IR 04/03/2024	MODEL_01.pfd	Page 5 Residential Development Coachford Co. Cork	
Node Name	S9	S10	S11	S12	S13		S14
A4 drawing							
Ver Scale 100							
Datum (m) 68.000							
Link Name	3.000	3.001	3.002		3.003	3.004	
Section Type	225mm	225mm	225mm		225mm	225mm	
Slope (1:X)	39.2	42.0	31.2		169.1	31.9	
Cover Level (m)	75.582	75.404	75.059	74.000	74.100		73.000
Invert Level (m)	74.357 74.179	74.179	73.834	72.775 72.775	72.663 72.663		71.775
Length (m)	6.981	14.479	33.007		18.936	28.344	
.		F	-low+ v10.8 Copyright © 1988-2	2024 Causeway Tech	nologies Ltd		

	Walsh Design Group	File: COACHFORD_MODEL_01.pfd	Page 6
CALICELAA	The Mall, Maryborough,	Network:	Residential Development
CAUSEVA	Douglas,	IR	Coachford
	Cork	04/03/2024	Co. Cork
Node Name	S14	S15	
		<u>``</u>	
A4 drawing			
Hor Scale 500			
Ver Scale 100			
Datum (m) 66.000			
Link Name	3.005		
Section Type	225mm		
Slope (1:X)	29.9		
Cover Level (m)	000	131	
	73.0	72.	
	·		
Invert Level (m)	775	006	
	71.1	70.1	
Length (m)	26.149		
	Flow+ v10.8 Copyrigh	t © 1988-2024 Causeway Technologies Ltd	

Appendix B

Wastewater Design

• Wastewater Sewer Network Design. (see drawing 23028-XX-XX-XX-DR-WDG-CE-002)

Design Settings

Frequency of use (kDU)	0.50	Minimum Velocity (m/s)	0.75
Flow per dwelling per day (I/day)	2430	Connection Type	Level Soffits
Domestic Flow (I/s/ha)	0.0	Minimum Backdrop Height (m)	1.000
Industrial Flow (I/s/ha)	0.0	Preferred Cover Depth (m)	1.200
Additional Flow (%)	10	Include Intermediate Ground	\checkmark

<u>Nodes</u>

Name	Dwellings	Cover Level (m)	Manhole Type	Easting (m)	Northing (m)	Depth (m)
F1	9	75.659	Adoptable	545791.322	573562.562	1.350
F2		75.409	Adoptable	545781.987	573553.902	1.350
F3	5	75.020	Adoptable	545796.181	573538.862	1.350
F4		74.200	Adoptable	545777.628	573521.291	1.350
F5	2	73.487	Adoptable	545798.667	573496.705	1.350
F6	5	75.680	Adoptable	545824.967	573548.237	1.350
F7		75.329	Adoptable	545854.065	573516.593	1.716
F8	3	75.185	Adoptable	545855.004	573508.611	1.706
F9		73.717	Adoptable	545834.606	573490.498	1.350
F10		72.975	Adoptable	545826.312	573480.102	1.350
F11		72.398	Adoptable	545822.895	573470.444	1.698
F12		70.885	Adoptable	545806.780	573455.222	2.385
F13		68.493	Adoptable	545810.536	573436.848	1.033

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)
1.000	F1	F2	12.732	1.500	74.309	74.059	0.250	50.9	150
1.001	F2	F3	20.680	1.500	74.059	73.670	0.389	53.2	150
1.002	F3	F4	25.553	1.500	73.670	72.850	0.820	31.2	150
1.003	F4	F5	32.359	1.500	72.850	72.137	0.713	45.4	150
1.004	F5	F11	35.730	1.500	72.137	70.700	1.437	24.9	150
2.000	F6	F7	42.990	1.500	74.330	73.613	0.717	60.0	150
2.001	F7	F8	8.037	1.500	73.613	73.479	0.134	60.0	150
2.002	F8	F9	27.279	1.500	73.479	72.367	1.112	24.5	150
2.003	F9	F10	13.299	1.500	72.367	71.625	0.742	17.9	150
2.004	F10	F11	10.244	1.500	71.625	71.215	0.410	25.0	150
1.005	F11	F12	22.168	1.500	70.700	69.550	1.150	19.3	225

Name	Pro Vel @ 1/3 Q (m/s)	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Dwellings (ha)	Σ Units (ha)	Σ Add Inflow (ha)	Pro Depth (mm)	Pro Velocity (m/s)
1 000	(11/3)	1 220	24 7	0.2	1 200	1 200	0.000	0	0.0		(1111)	(11/3)
1.000	0.282	1.229	21.7	0.3	1.200	1.200	0.000	9	0.0	0.0	12	0.405
1.001	0.276	1.203	21.3	0.3	1.200	1.200	0.000	9	0.0	0.0	13	0.410
1.002	0.383	1.573	27.8	0.4	1.200	1.200	0.000	14	0.0	0.0	13	0.554
1.003	0.350	1.302	23.0	0.4	1.200	1.200	0.000	14	0.0	0.0	14	0.486
1.004	0.429	1.761	31.1	0.5	1.200	1.548	0.000	16	0.0	0.0	13	0.621
2.000	0.227	1.132	20.0	0.2	1.200	1.566	0.000	5	0.0	0.0	10	0.319
2.001	0.227	1.132	20.0	0.2	1.566	1.556	0.000	5	0.0	0.0	10	0.318
2.002	0.357	1.773	31.3	0.2	1.556	1.200	0.000	8	0.0	0.0	10	0.501
2.003	0.388	2.076	36.7	0.2	1.200	1.200	0.000	8	0.0	0.0	9	0.561
2.004	0.354	1.757	31.0	0.2	1.200	1.033	0.000	8	0.0	0.0	10	0.496
1.005	0.512	2.621	104.2	0.7	1.473	1.110	0.000	24	0.0	0.0	14	0.730

	CEV		N T	Valsh Desi he Mall, N	gn Group Iaryborough	F ۲	File: COAC Network:	CHFORD_MC	DEL_01.	Page 2 Resident	ial Development
	JEV		D C	ouglas,			R 14/03/20 ²	74		Coachfor	d
						Links	54/03/202	24			
		Nama		DC	Longth k	<u> (</u>	<u>,</u>				
		1 006	Node F12	E Node	(m)	n 1 500	(m)	(m)	(m) (1	:X) (mm)
Name	Pro	Vel Ve	el C	Cap Flow	v US	DS D	E Area D	E Dwellings	Σ Units	Σ Add	Pro Pro
	@ 1/ (m/	′3 Q (m, /s)	/s) (I	/s) (I/s) Depth (m)	Depth (m)	(ha)	(ha)	(ha)	Inflow (ha)	Depth Velocity (mm) (m/s)
1.006	0.	529 2.7	10 10	07.7 0.	7 2.160	0.808	0.000	24	0.0	0.0	14 0.755
					P	<u>ipeline Sc</u>	<u>hedule</u>				
	Link	Length	Slope	Dia	Link –	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	4 000	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
-	1.000	12.732	50.9	150	Circular Foul	75.659	74.309	1.200	75.409	74.059	1.200
	1.001	20.680	53.2	150	Circular Foul	75.409	74.059	1.200	75.020	73.670	1.200
	1.002	25.553	31.2	150	Circular Foul	75.020	73.670	1.200	74.200	72.850	1.200
	1.003	32.359	45.4	150	Circular Foul	74.200	72.850	1.200	73.487	72.137	1.200
	1.004	35.730	24.9	150	Circular Foul	73.487	72.137	1.200	72.398	70.700	1.548
	2.000	42.990	60.0	150	Circular Foul	75.680	74.330	1.200	75.329	73.613	1.566
	2.001	8.037	60.0	150	Circular Foul	75.329	73.613	1.566	75.185	73.479	1.556
	2.002	27.279	24.5	150	Circular Foul	75.185	73.479	1.556	73.717	72.367	1.200
-	2.003	13.299	17.9	150	Circular Foul	73.717	72.367	1.200	72.975	71.625	1.200
-	2.004	10.244	25.0	150	Circular Foul	72.975	71.625	1.200	72.398	71.215	1.033
	1.005	22.168	19.3	225	Circular Foul	72.398	70.700	1.473	70.885	69.550	1.110
-	1.006	18.754	18.0	225	Circular Foul	70.885	68.500	2.160	68.493	67.460	0.808
		Link	US	Dia	Node	МН	DS	Dia	Node	МН	
			Node	e (mm)	Туре	Туре	Node	(mm)	Туре	Туре	
		1.000	F1	1200	Manhole	Adoptable	e F2	1200 N	lanhole	Adoptable	
		1.001	F2	1200	Manhole	Adoptable	e F3	1200 N	lanhole	Adoptable	
		1.002	F3	1200	Manhole	Adoptable	e F4	1200 N	1anhole	Adoptable	2
		1.003	F4	1200	Manhole	Adoptable	e F5	1200 N	1anhole	Adoptable	2
		1.004	F5	1200	Manhole	Adoptable	e F11	1200 N	1anhole	Adoptable	2
		2.000	F6	1200	Manhole	Adoptable	e F7	1200 N	1anhole	Adoptable	2
		2.001	F7	1200	Manhole	Adoptable	e F8	1200 N	1anhole	Adoptable	2
		2.002	F8	1200	Manhole	Adoptable	e F9	1200 N	1anhole	Adoptable	2
		2.003	F9	1200	Manhole	Adoptable	e F10	1200 N	1anhole	Adoptable	2
		2.004	F10	1200	Manhole	Adoptable	e F11	1200 N	1anhole	Adoptable	2
		1.005	F11	1200	Manhole	Adoptable	e F12	1200 N	1anhole	Adoptable	2
		1.006	F12	1200	Manhole	Adoptable	e F13	1200 N	1anhole	Adoptable	2
					<u>N</u>	<u>lanhole So</u>	<u>chedule</u>				
	Node	Eastin	ng	Northing	CL (m)	Depth (m)	Dia (mm)	Connectio	ns Lii	nk IL (m)	Dia (mm)
	F 1	5/15701	277	(III) 573567 54	2 75 650	1 250	1200			(11)	(1111)
	11	545751		575502.50	2 13.033	1.300	1200	\sim			
								U	0 1.0	00 74.30	9 150
	F2	545781	.987	573553.90	2 75.409	1.350	1200	1	1 1.0	000 74.05	9 150
								/'			
								\propto			
								(X)			

Γ

Walsh Design Group	File: COACHFORD_MODEL_01.	Page 3
The Mall, Maryborough,	Network:	Residential Development
Douglas,	IR	Coachford
Cork	04/03/2024	Co. Cork

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
F3	545796.181	573538.862	75.020	1.350	1200		1.001	73.670	150
						0	1.002	73.670	150
F4	545777.628	573521.291	74.200	1.350	1200		1.002	72.850	150
						0	1.003	72.850	150
F5	545798.667	573496.705	73.487	1.350	1200		1.003	72.137	150
						0	1.004	72.137	150
F6	545824.967	573548.237	75.680	1.350	1200				
						0	2.000	74.330	150
F7	545854.065	573516.593	75.329	1.716	1200		2.000	73.613	150
						<mark>0 0</mark>	2.001	73.613	150
F8	545855.004	573508.611	75.185	1.706	1200		2.001	73.479	150
						0	2.002	73.479	150
F9	545834.606	573490.498	73.717	1.350	1200		2.002	72.367	150
						° 0	2.003	72.367	150
F10	545826.312	573480.102	72.975	1.350	1200		2.003	71.625	150
						o [*] 0	2.004	71.625	150
F11	545822.895	573470.444	72.398	1.698	1200	2 1 1 2	2.004	71.215	150
							1.004	70.700	150
E17	E1E006 700	572/55 222	70 005	2 205	1200	1	1.005		225
FIZ	545800.780	573455.222	70.885	2.385	1200		1.005	09.550	225
						<u>i</u> 0	1.006	68.500	225
F13	545810.536	573436.848	68.493	1.033	1200		1.006	67.460	225

CAUSE		Walsh Desig The Mall, M Douglas, Cork	gn Group Iaryborough,		File: COACHFORD_MODEL_0 Network: IR 04/03/2024	1.pfd	Page 1 Residential Developmen Coachford Co. Cork	:
Node Name	F		F2	F3		F4		F5
Node Name				F3				
A4 drawing								
Hor Scale 500 Ver Scale 100								
Datum (m) 68.000								
Link Name		1.000	1.001		1.002		1.003	
Section Type		150mm	150mm	_	150mm		150mm	
Slope (1:X)		50.9	53.2	_	31.2		45.4	
Cover Level (m)			75.409	75.020		74.200		73.487
Invert Level (m)		74.059	74.059	73.670	72.850	72.850	751 07	
Length (m)		12.732	20.680		25.553		32.359	
			Flow+ v10.8 Copyright @) 1988-	2024 Causeway Technologies Lt	td		

	Walsh Design Group The Mall, Maryborough, Douglas, Cork	File: COACHFORD_MODEL_01.pfd Network: IR 04/03/2024	Page 2 Residential Development Coachford Co. Cork
Node Name	F5	F11	F12 F13
A4 drawing Hor Scale 500 Ver Scale 100 Datum (m) 65.000			
Link Name	1.004	1.005	1.006
Section Type	150mm	225mm	225mm
Slope (1:X)	24.9	19.3	18.0
Cover Level (m)	73.487	72.398	70.885 68.493
Invert Level (m)	72.137	70.700	67.460
Length (m)	35.730	22.168	18.754

Node Name F6 F7 F8 F9 F10 F11 A drawing Image: Constraint of the second seco	CAUSE	WAY 🛟	Walsh Design Group The Mall, Maryborough, Douglas, Cork		File: COAC Network: IR 04/03/202	CHFORD_MODEL_01.pfd	Page 3 Residential De Coachford Co. Cork	evelopment
A4 drawing	Node Name	F6		ĺ	7	F8	F9	F10 F11
Hor Scale 500 Ver Scale 100 Image: Constraint of the state of the sta	A4 drawing				,			
Nor scale 500 Ver Scale 100 Image: scale 100 model Image: scale 100 mo	Her Scale E00							
Datum (m) 67.000 Image: Constraint of the state of the s	Ver Scale 100							
Link Name 2.000 2.001 2.002 2.003 2.004 Section Type 150mm	Datum (m) 67.000							
Section Type 150mm	Link Name		2.000		2.001	2.002	2.003	2.004
Slope (1:X) 60.0 24.5 17.9 25.0 Cover Level (m) 000 500 <td>Section Type</td> <td></td> <td>150mm</td> <td></td> <td>150mm</td> <td>150mm</td> <td>150mm</td> <td>150mm</td>	Section Type		150mm		150mm	150mm	150mm	150mm
Cover Fevel (w) 73.613 73.5185 73.5185 73.5329 Invert Fevel (w) 71.625 73.713 75.185 75.185 71.215 72.3673 75.185 75.185 75.185 72.398 73.713 75.185 75.185 75.185	Slope (1:X)		60.0		60.0	24.5	17.9	25.0
Invert Fend 73.55 73.361 73.613 73.613 71.21 71.21 72.33 73.479 33.30 71.21 71.21 72.33 73.479 33.479	Cover Level (m)	75.680			75.329	75.185	73.717	72.975 72.398
Longth (m) 42,000 8,027 27,270 12,200 10,244	Invert Level (m)	74.330		73.613	73.613 73.479	73.479	72.367 72.367	71.625 71.625 71.215
Lengui (11) 42.330 8.037 27.279 13.239 10.244	Length (m)		42.990		8.037	27.279	13.299	10.244

Appendix C

Irish Water Documents

Irish Water Documents:

• Confirmation of feasibility Letter.

CONFIRMATION OF FEASIBILITY

Ciaran Galvin

Cork County Council The Courthouse Skibbereen Co. Cork P81 DX52

7 June 2023

Our Ref: CDS23003794 Pre-Connection Enquiry Clontead Beg, Coachford, Co. Cork

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Irish Water has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 26 unit(s) at Clontead Beg, Coachford, Co. Cork (the Development).

Based upon the details provided we can advise the following regarding connecting to the networks;

•	Water Connection	-	Feasible without infrastructure upgrade by Irish Water
•	Wastewater Connection	-	Feasible without infrastructure upgrade by Irish Water

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before the Development can be connected to our network(s) you must submit a connection application and be granted and sign a connection agreement with Irish Water.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at www.water.ie/connections/get-connected/

Where can you find more information?

• Section A - What is important to know?

Stiúrthóirí / Directors: Tony Keohane (Chairman), Niall Gleeson (CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh

Oifig Chláraithe / Registered Office: Teach Colvill, 24–26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24–26 Talbot Street, Dublin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Iri sh Wa ter PO Box 448, South City Delivery Office, Cork City.

www.water.ie

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Irish Water's network(s). This is not a connection offer and capacity in Irish Water's network(s) may only be secured by entering into a connection agreement with Irish Water.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

vonne Maesis

Yvonne Harris Head of Customer Operations

Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	• Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Irish Water's network(s).
	 Before the Development can connect to Irish Water's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Irish Water.
When should I submit a Connection Application?	 A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Irish Water connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>
Who will carry out the connection work?	 All works to Irish Water's network(s), including works in the public space, must be carried out by Irish Water*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Irish Water's network(s)?	 Requests for maps showing Irish Water's network(s) can be submitted to: <u>datarequests@water.ie</u>

What are the design requirements for the connection(s)?	The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this
	Development shall comply with <i>the Irish Water</i>
	and Codes of Practice, available at <u>www.water.ie/connections</u>
Trade Effluent Licensing	 Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	 More information and an application form for a Trade Effluent License can be found at the following link:
	https://www.water.ie/business/trade-effluent/about/
	**trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)

Appendix D

Utilities

- ESB Map
- Gas Networks Ireland Map

Important Safety Notice: Damage to gas pipelines can result in serious injury or death. Gas network information is provided as a general guide. The exact location and depth of medium or low pressure distribution gas pipes must be verified on site by carrying out necessary investigations, including, for example, hand digging trial holes along the route of the pipe. Service pipes are not generally shown but their presence should always be anticipated.			
High pressure transmission pipelines are shown in red. If a transmission pipeline is identified within 10m of any intended excavations then work must not proceed before GNI has been consulted. The true location and depth of a transmission pipeline must be verified on site by a representative of GNI. Contact can be made through 1800 427 747.			
All work in the vicinity of the gas network must be completed in accordance with the current edition of the Health and Safety Authority publication, 'Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (0818 289 389) or can be downloaded at www.hsaie.			
Legal Notice: Gas Networks Ireland (GNI) and its affiliates, accept no responsibility for the accuracy of any information contained in this document including data concerning location and technical designation of the gas distribution and transmission network (the "Information"). The Information should not be relied on for accurate distance or depth of cover measurements.			
Any representations and warranties, express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation,direct, indirect or consequential loss, arising out of or in connection with the use or re-use of the Information.			
Reproduced from the Ordnance Sur Licence No. 3-3-34	vey by permission of the Government.		
Aurora Telecom I	Duct		
— Aurora Telecom	Sub Duct Aurora		
Aurora Telecom Inserted Gas Pipe			
Aurora Telecom Queries - 01-8926166 (Office Hours)			
Aurora_Network_Queries@gasnetworks.ie Aurora Telecom Emergency Only 1800 427399 / 01 2030120			
Transmission Pipe	e (High Pressure)		
Iransmission Pipe (Construction Issue)			
Distribution Pipe (
Service Pipe (Med	dium Pressure)		
Service Pipe (Low	/ Pressure)		
Strategic Pipe (M	edium Pressure)		
Strategic Pipe (Lo	w Pressure)		
■ ■ ■ ■ Inserted			
X X Abandoned Pipe			
C=? Cover (depth in met	res) X Pressure Monitor		
CP CP Test Point Protection (Slabbing)			
End Cap	Protection (Sleeve)		
Hot Tap	A Reducer		
Installation	□ Service Terminator		
△ Valve	 Tee 		
Mains Verification**	Transition		
** Please contact GNI on 18	00-427747 for specific information		
DIAL BEFORE YOU D	Gas		
In Emergency call			
1800 20 50 50 Jun Ireland			
GAS NETWORK INFORMATION			
Description: Coachford			
Location: 545832,573474			
Plot Date: 31/01/2024 12:53	Scale: 2500 @ A3		
Plotted By: 3948 Ref ID: 3948_31012024125302			